Journal of Organometallic Chemistry, 272 (1984) 337-350 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

BIS(DIMETHYLMETALL(III)GLYOXIMATO)METALLATE(II) (METALL(III) = Al, Ga, In, METALL(II) = Ni, Pd, Pt, Cu) *

U. KOHLER, H.-D. HAUSEN und J. WEIDLEIN*

Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80 (Deutschland)

(Eingegangen den 16. Marz 1984)

Summary

When the trimethyl derivatives of aluminium, gallium and indium react with glyoximato metallates, $(R_2C_2N_2(O)OH)_2Met^{II}$ (R = H, CH₃; Met^{II} = Ni, Pd, Pt, Cu), in a 2/1 molar ratio, 2 mol of methane are evolved and monomeric bis(dimethylmetal(III)glyoximato)metallates(II) (metal(III) = Al, Ga, In) are formed in high yields. The vibrational and NMR spectra of the new complexes were measured and were partly resolved. The X-ray structure determinations of two of these compounds show non-planar structures of approximate C_{2h} and C_2 symmetry, respectively, with weak metal(III) \cdots metal(II) π -interactions.

Zusammenfassung

Aluminium-, Gallium- und Indiumtrimethyle reagieren mit Glyoximatometallaten, $(R_2C_2N_2(O)OH)_2Met^{II}$ (R = H, CH_3 ; $Met^{II} = Ni$, Pd, Pt, Cu), im Molverhältnis 2/1, wobei neben 2 Mol Methan monomere Bis(dimethylmetall(III)glyoximato)metallate(II) (Metall(III) = Al, Ga, In) in hohen Ausbeuten gebildet werden. Die Schwingungs- und NMR-Spektren der Komplexe wurden vermessen und teilweise zugeordnet. Die Röntgenstrukturanalysen zweier Verbindungen zeigen nicht-planare Strukturen, angenähert der Symmetrie C_{2h} bzw. C_2 , mit schwachen Metall(III) ··· Metall(II)- π -Wechselwirkungen.

Einleitung

Wie die Röntgenstrukturanalysen von Bis(butandiondioximato)- und Bis(ethandialdioximato)-Komplexen (im folgenden soll-wie bisher üblich-von Dimethylglyoximaten (abgekürzt DMG) und Glyoximaten (G) die Rede sein) des Nickels [1,3], Palladiums, Platins [2,3] und Kupfers [4] zeigen, sind die Metall(II)ionen im Kristall (z.T.) durch schwache Bindungen miteinander verknüpft; ausserdem be-

^{*} Herrn Professor Eckhard Allenstein zum 60. Geburtstag gewidmet.

stehen noch weitere intermolekulare Wechselwirkungen, welche möglicherweise für die hohe analytische Spezifität einiger dieser Komplexe verantwortlich sind [5]. Substituiert man die relativ aciden H-Atome der mehr oder minder symmetrischen O-H ··· O-Brückenbindungen z.B. durch M^3X_2 -Gruppierungen, was durch Umsetzung der Metallglyoximate mit M^3X_3 -Verbindungen ($M^3 = B$; X = F, Et, Ph, OMe [6,7] bzw. $M^3 = Al$; X = Cl, i-Bu, Ph, O-i-Pr) [8]) unter Abspaltung von HHal oder HR leicht möglich ist, so gelangt man zu neuartigen Komplexen, in denen das Metallglyoximatgerüst praktisch unverändert vorliegt [9,10]. Die Röntgenstrukturanalyse von Bis(bordifluordimethylglyoximato)-Nickel(II), $(BF_2)_2[Ni(DMG)_2]$ [9], lässt aber im Vergleich zum Ausgangsprodukt Ni(DMGH)₂ [1] eine Verkürzung der Ni ··· Ni-Distanz (auf etwa 320 pm) benachbarter Moleküle erkennen, so dass hier dimere Einheiten diskutiert worden sind.

Wir vermuteten bei vergleichbaren Komplexen mit grösseren Zentral-Metallatomen noch ausgeprägtere π - π -Wechselwirkungen benachbarter Moleküle und unterzogen daher die Umsetzungsprodukte von Met(DMGH)₂ und Met(GH)₂ (Met = Ni, Pd, Pt, Cu) mit einfachen Elementtrimethylen M³Me₃ (M³ = Al, Ga, In; Me = CH₃) eingehenden physikalischen und z.T. auch röntgenographischen Studien.

Synthese und Eigenschaften

Die Darstellung der Komplexe des Typs (M³Me₂)₂[Met(DMG)₂] bzw. $(M^{3}Me_{2})_{2}[Met(G)_{2}]$ (Met = Ni, Pd, Pt, Cu und M^{3} = Al, Ga, In) erfolgte nach der gasvolumetrisch gut zu verfolgenden "HX-Methode" [z.B. 11] durch Umsetzung des jeweiligen Glyoximats mit einem Metalltrimethyl im Molverhältnis 1/2. Als Lösungsmittel für die schwach exotherm verlaufenden Reaktionen haben sich Benzol und Toluol bewährt, da die resultierenden Komplexe in diesen Lösungsmitteln einigermassen löslich sind. In Kohlenwasserstoffen (Pentan, Hexan) und auch in Ether ist die Löslichkeit dagegen verschwindend gering. Durch Umkristallisation der Reaktionsprodukte aus Toluol oder Benzol/Chloroformgemischen erhält man feinkristallines Material von guter analytischer Qualität. Alle Metall(III)-Metallat-Komplexe sind intensiv farbig, doch unterscheidet sich die Farbe in der Regel nicht gravierend (Ausnahme: Pt-Derivat) von derjenigen des aciden Ausgangskomplexes. Der meist unter heftigen Lichterscheinungen einsetzenden thermischen Zersetzung (etwa zwischen 200-300 °C) geht eine deutliche Farbvertiefung der Probe voran, nur für (GaMe₂)₂[Ni(DMG)₂] konnte mit 248–249°C ein Schmelzpunkt (knapp unterhalb der Zersetzungstemperatur) ermittelt werden. Aus Gründen der thermischen Instabilität ist von Reinigungsversuchen durch Vakuumsublimation dringend abzuraten! Die Komplexe sind gegenüber Luftsauerstoff bemerkenswert stabil, die Einwirkung von Feuchtigkeit führt dagegen-mit unterschiedlicher Geschwindigkeit -zur Rückbildung des Ausgangsglyoximats (erkenntlich an der Farbe) und im Falle des Aluminiumderivats unter spontaner Methanentwicklung auch zur Spaltung der Al-Methyl-Bindungen.

 $(AlMe_2)_2[Met(G)_2]$ -Komplexe sind nach der zitierten "Säuremethode" [11] nicht analysenrein zu erhalten, da neben der Methaneliminierung in unkontrollierbarer Weise auch Einschubreaktionen stattfinden. Daher muss auf die "Salzmethode" [11] zurückgegriffen werden, bei der allerdings noch Probleme bei der Abtrennung des als Nebenprodukt anfallenden LiCl gelöst werden müssen. Die in Tab. 1. aufgezählten Komplexe sind alle nach dem HX-Verfahren erhalten worden, die Farben der

TABELLE 1

Verbindung	Zersetzung- bereich, $T \pm 5^{\circ} C$	Farbe [12]
$(Me_2Al)_2[Ni(Me_2C_2O_2N_2)_2] $ (1)	190	orange (C30/M60/Y90)
$(Me_2Ga)_2[Ni(H_2C_2O_2N_2)_2]$ (2a)	a) 245	dunkelrot (C60/M80/Y80)
$(Me_2Ga)_2[Ni(Me_2C_2O_2N_2)_2]$ (2b)	e) 255 Fp. 248–249	hellrot (C40/M80/Y99)
$(Me_2Ga)_2[Pd(Me_2C_2O_2N_2)_2]$ (2c	270	hellgrüngelb (C30/M00/Y60)
$(Me_2Ga)_2[Pt(Me_2C_2O_2N_2)_2]$ (2d	l) 285	olivgrün (C99/M10/Y99)
$(Me_2Ga)_2[Cu(Me_2C_2O_2N_2)_2]$ (2e	e) 195	braunschwarz (C99/M99/Y99)
$(Me_2In)_2[Ni(H_2C_2O_2N_2)_2]$ (3a)	a) 225	rotbraun (C60/M80/Y90)
$(Me_2In)_2[Ni(Me_2C_2O_2N_2)_2]$ (3b)	205	rot (C50/M80/Y80)
$Li_{2}[Ni(Mc_{2}C_{2}O_{2}N_{2})_{2}]$ (4)	290	braun (C50/M80/Y99)

BIS(DIMETHYLMETALLDIMETHYLGLYOXIMATO)- UND BIS(DIMETHYLMETALLGLYO-XIMATO)METALLATE(II)

Komplexe sind nach den Farbtafeln der Europaskala [12] bestimmt worden und schliesslich soll zur Vereinfachung die hier getroffene Numerierung der Verbindungen im folgenden weiterverwendet werden.

Spektren und Strukturmöglichkeiten

Die Strukturen der Dimethylmetall-glyoximatokomplexe werden zweifellos durch die Grundkörper bestimmt [8-10], d.h. es ist stets mit einem planaren oder nur wenig von der planaren Anordnung abweichenden $Met(C_2N_2O_2)_2$ -Skelett zu rechnen. Bezieht man aber die M³Me₂-Gruppierungen in die Strukturbetrachtungen mit ein, dann sind neben der—aus Ringspannungsgründen sehr unwahrscheinlichen —ebenen Form (A) noch gewellte Strukturmodelle in Betracht zu ziehen, die wir in Anlehnung an die Nomenklatur bei gewellten Sechsringen als "Wannen"- (B), "Sessel"- (C) und "Twist"-Form (D) bezeichnen:

In den ¹H- und ¹³C-NMR-Spektren der Komplexe treten die Signale der verschiedenen Protonen bzw. Kohlenstoffatome (H-entkoppeltes ¹³C-Spektrum) bei Raumtemperatur stets streng einfach auf. Dies kann aber in keiner Weise zugunsten einer der Formen A-D ausgelegt werden, da einerseits für Strukturumwandlungen (z.B. B in C oder D) sicherlich keine hohen Energiebarrieren überwunden werden müssen und andererseits keine relevanten Unterschiede magnetisch nicht identischer Gruppen vorhanden sind, so dass auch keine Signalaufspaltungen erwartet werden können. Somit ist den Kernresonanzdaten im Grunde nur analytischer Aussagewert beizumessen. In Tab. 2 sind die Messwerte der Spektren zusammengefasst.

Schwingungsspektroskopisch sollte (nach der Theorie) zumindest zwischen den zentrosymmetrischen Strukturen A und C (Punktgruppe D_{2h} und C_{2h}) sowie den azentrischen Modellen B und D (Punktgruppe C_{2n} und D_2 oder C_2 , je nach Art der Verdrillung) zu unterscheiden sein. Da jedoch die intensive Färbung und die Lichtempfindlichkeit der Komplexe (im Laserlicht) die Registrierung einwandfreier Ramanspektren verhinderte (nur von den Verbindungen **2b** und **2c** waren partiell auswertbare Feststoffaufnahmen zugänglich), ist eine Gesamtzuordnung der Spektraldaten wenig sinnvoll, zumal Schwingungskopplungen über die Metallatome Met und M³ hinweg kaum zu nennenswerten Gleich- und Gegentaktaufspaltungen führen werden. Wir ordnen aus diesen Gründen die Spektren in erster Näherung nur

TABELLE 2

'H-NMR				
Verbindung	δ(C-H)	δ(C-CH ₃)	$\delta(CH_3 - M^3)$	Lösungsmittel
1		1.83	0.20	C ₆ D ₆
		2.12	-0.77	CDCl ₃
2a	6.10		0.33	C ₆ D ₆
	7.17		-0.09	CDCl ₃
2b		1.75	0.38	C ₆ D ₆
		2.10	-0.10	CDCl ₃
2c		1.87	0.26	C ₆ D ₆
		2.14	-0.30	CDCl ₃
2d		1.98	0.22	C ₆ D ₆
		2.19	-0.29	CDCl ₃
3a	7.11		-0.07	CDCl ₃
3b		1.68	0.36	C ₆ D ₆
		2.01	-0.07	CDCl ₃
DMGH ₂ [13]		2.01		Polysol-d
¹³ C-NMR				
Verbindung	δ(Ľ=N)	δ(CH ₃)(-C)	$\delta(CH_3)(M^3)$	Lösungsmittel
2b	157.23	12.39	-7.87	$C_6 D_6$
2c	157.06	12.35	- 7.68	$C_6 D_6$
2d	158.61	12.57	- 7.55	C ₆ D ₆
DMGH ₂ [14]	153.1	9.2		DMSO

WERTE DER CHEMISCHEN VERSCHIEBUNGEN δ (ppm) DER BIS(DI-METHYLELEMENT(III)GLYOXIMATO)METALLATE 1–3 BEI RAUMTEMPERATUR ^a

^{*a*} Fur die ¹H-NMR-Spektren diente C₆D₅H bzw. CHCl₃ als interner Standard; Umrechnung auf die TMS-Skala mit δ (C₆D₅H) 7.25 bzw. δ (CHCl₃) 7.24 ppm. In den ¹³C-Spektren war das mittlere Signal des C₆D₆-Tripletts bei 127.96 ppm Bezugspunkt.

dem Dioximgerüst, den MetN₄- und schliesslich den M³Me₂-Gruppierungen getrennt zu.

Die frequenzhöchsten Absorptionsbanden (und Ramanlinien) im Bereich unterhalb 1700 Wellenzahlen gehören fraglos dem Dioximgerüst an. Fast unabhängig von der Art der beiden Metallatome liegen die drei wichtigsten, stark miteinander gekoppelten Schwingungen dieses Molekülbausteins-die N-C-C-N-Streckbewegungen—in sehr engen Grenzen (1500-1600 bzw. 1350-1400 cm⁻¹) und unterscheiden sich lediglich um 30-40 cm⁻¹ beim Übergang von den Glyoxim- zu den Dimethylglyoxim-Komplexen. Nur eine dieser Schwingungen ist asymmetrischen Charakters (was ihre hohe IR-Intensität erkennen lässt), während die beiden anderen Vibrationen symmetrischer Art sind und somit intensiveren Ramanlinien zugeordnet werden müssen. In den Spektren von DMGH₂ [15] und dessen Natriumsalz Na₂DMG zeigen die genannten Schwingungen das für ein zentrosymmetrisches Bauprinzip der Symmetrie C_{2h} geforderte strenge Alternativverhalten. Auch für die Ausgangskomplexe Met(DMGH)₂ wird bei der Spektrendiskussion Zentrosymmetrie zu Grunde gelegt [16-20], obwohl dies streng genommen den Ergebnissen der Röntgenstrukturanalysen [1-4] z.T. widerspricht. In den IR-Spektren unserer Me₂M³-Glyoximatokomplexe sind stets mindestens zwei der drei NCCN-Skelettschwingungen zu beobachten, was aber aus den genannten Gründen höchstens als Hinweis, aber keinesfalls als Beweis für ein azentrisches Strukturprinzip gewertet werden darf.

Dennoch kann diesen Gerüstschwingungen ein Aussagewert beigemessen werden: z.B. lässt der Frequenzanstieg der asymmetrischen NCCN-Bewegung in der Reihe:

$$\begin{array}{ccc} Na_{2}[DMG] & Li_{1}[Ni(DMG)_{2}] & Ni(DMGH)_{2} & (Me_{2}Al)_{2}[Ni(DMG)_{2}] \\ 1508 & 1552 & 1570 & 1602 \text{ cm}^{-1} \end{array}$$

eine durch die "Liganden" Ni bzw. H oder $AlMe_2$ bedingte Bindungsverstärkung erkennen, während die Reihe

 $\nu_{as}(\text{CCN})$ bei 1602 1591 1566 1552 cm⁻¹ für (1) (2a) (3a) (4)

den zunehmend ionischen Charakter der Komplexe widerspiegelt und unseren Ergebnissen früherer Reihenuntersuchungen an homologen Al-Ga-In-Organylen entspricht [z.B. 21]. Die zugehörigen symmetrischen Bewegungen werden dagegen nur unwesentlich beeinflusst (z.B. liegt die frequenzhöhere Mode stets um 1520 cm⁻¹); ebenso ist weder bei der asymmetrischen, noch bei der symmetrischen Vibration ein markanter Einfluss des zentralen Metallatoms (Met = Ni, Pd, Pt, Cu) zu erkennen.

In den IR-Spektren aller DMG-Komplexe treten zwischen etwa 1250 und 950 cm⁻¹ jeweils drei sehr starke Absorptionen auf; in den Spektren der Glyoximatohomologen ist hier nur eine Bande vergleichbarer Intensität zu erkennen. In diesem Bereich sind neben den NO-Valenzschwingungen auch die C-CH₃-Vibrationen (sowie verschiedene CH-bzw. CH₃-Deformationen) zu erwarten [22]. Wegen ausgeprägter Schwingungskopplungen (z.B. mit den Bewegungen des NCCN-Skeletts) kann von "charakteristischen Schwingungen" keine Rede sein, dennoch kann den nur bei den DMG-Komplexen auftretenden Absorptionen zwischen 1200–1240 cm⁻¹ bzw. 970–990 cm⁻¹ hoher CH₃-C-Valenz- bzw. CH₃-Deformationsschwingungscharakter zugebilligt werden, während die Bande um 1100 cm⁻¹ hauptsächlich

'er		v _{as} (CCN)	$\nu_{\rm c}(\rm CCN) + \nu(\rm CC)$	ν(C-CH ₃) +	+ (ON)4	$\rho(CH_3-C)$	δ(CNO)	$(\delta(CCN)^{b})$	å(CCCH3
	IR	1602st "	1531ss	1223st	1103st	984st-m	860m	798st/565s-m	529m
	IR	1564sst	1502s-m		1182sst.br		863st	798* st/625m	
_	IR	1591st	1520ss	1217sst	1096st	977st-m	852m	771st-m/580st-m	519st
	RE	(1582s)	(1518sst) (1359m)		(1099s,br)				
• •	IR	1588st	1520ss	1230sst	1095sst,br	984st-m	856s-m	760st-m/567st-m	517st
	RE	(1582s)	(1523st) (1356m)					(575ss)	(517ss)
_	IR	1592st	1520ss	1238sst	1095st	993st-m	861s-m	772m/577st	530st
<i>6</i> 3	IR	1598st	1521Sch	1200sst	1085sst	971st	839s-m	767m/574st-m	498st
	IR	1546sst	1483s-m		1201sst,br		852/847st-m	785 * st,br/578m	
	IR	1566st	1488s	1208sst	1084st	970st-m	845s	749m/547s	520st
	IR	1552st	14845	1240sst	1109st	978st-m	842s	761st-m/577m	532sst

TABELLE 4. IR- (UND RAMAN-) FREQUENZEN DER M³Me₂⁻¹, M³O₂⁻ UND MetN₄-GRUPPIERUNGEN DER BIS(DIMETHYLELEMENT-**GLYOXIMATO)METALLATE 1-4**

Verbindung $\delta_i(CH_3)(M^3)$ $\rho(CH_3)(M^3)$ $\nu_{a_i}(M^3C_2)$ $\nu_{a_i}(MO_2)$ $\nu(MetN)$ + $\delta(Gerust)$ 1IR1195/1186st710Sch/680sst[680]591m507st-m417ss390m365m305s-m2aIR11981t,br750st-m/687s598st542st-m476s-m399s-m365m305s-m305s-m2bIR11981t,br734ss1/688s-m590m542st-m476s-m399s-m365m305s-m305s-m2bIR1199s-m734ss1/688s-m590m542st-m477ss)428s377m365s-m305s-m2cIR1199s-m734ss1/689s-m590st539m467m390s-m377m365s-m310s.t2dIR1199s-m739ss1/689s-m539st-m545st-m477ms)379s-m377s-m310s.t3dIR1198/1202s-m739ss1/689s-m539st-m539m467m392s-m305s-m305s-m3dIR1198/1202s-m738s1/687s-m539st-m539st-m474m392s-m305s-m303s-m3dIRverdeckt718st,br538st-m539m464m425m335m305s-m305s-m3dIRverdeckt718st,br530st-m539st-m535m305st-m305s-m305s-m3dIRverdeckt718st,br530st-m530m355m305m305s-m205st-m205st-m3dIRverdeckt </th <th></th>											
I IR 1195/1186st 710Sch/680sst [680] 591m 507st-m 417ss 390m 363m 305s-m 2a IR 1103/1200m 756st-m/687s 588st 542st-m 476s-m 399s-m 365m 365m 305st-m 2b IR 1108st, br 734sst/688s-m 590m 542st-m 482m 399s-m 365m 365m 305st-m 2b IR 1198st, br 734sst/688s-m 590m 542st-m 482m 399s-m 365m 305st-m 2c IR 1198st, br 734sst/689s-m 590m 542st-m 487m 390s-m 305st-m 300sc-m 2c IR 1199s-m 740sst/689s-m 590st 539m 467m 390s-m 377m 357s-m 310sst-m 2d IR 1199s-m 740sst/689s-m 590st 539m 467m 390s-m 377m 357s-m 310sst-m 3d IR 1198s/1202s-m 739sst, 690s-m 539s	Verb	indung	δ ₍ (CH ₃) (M ³)	$\rho(CH_3)(M^3)$	$\nu_{a},(M^{3}C_{2})$	$p_{s}(M^{3}C_{2})$	$\nu_{us}(\mathrm{MO}_2)$		<i>▶</i> (MetN) +	δ(Gerúst)	
2a IR 1203/1200m 750st-m/687s 598t 542st-m 476s-m 399s-m 385m 366m 330s-r 2b IR 1198st,br 734sst/688s-m 590m 542s-m 482m 482m 385m 366m 330s-r 2b IR 1198st,br 734sst/688s-m 590m 542s-m 482m 482m 369s-m 300sch 2c IR 1199s-m 740sst/689s-m 590st 539m 467m 390s-m 317s-m 310s.th 2c IR 1199s-m,br) 740sst/689s-m 590st 539m 467m 390s-m 372m 357st-m 310s.th 2d IR 1199s/1202s-m 739sst/690s-m 593st-m 545st-m 474m 392s-m 340s-m 305s.th 310s.th 2a IR 1198/1202s-m 738st/687s-m 593st-m 545st-m 474m 392s-m 340s-m 310s-m 3a IR verdeckt 718st,br 538st-m 539m 464m 425m 340m 319s-m 3b IR <t< th=""><th>1</th><th>IR</th><th>1195/1186st</th><th>710Sch/680sst</th><th>[680]</th><th>591m</th><th>507st-m</th><th>417ss</th><th>390m</th><th>363m</th><th>305s-п</th></t<>	1	IR	1195/1186st	710Sch/680sst	[680]	591m	507st-m	417ss	390m	363m	305s-п
2b IR 1198st,br 734ss1/688-m 590m 542s-m 482m 428s 377m 366s-m 300Sch 2c IR (1905-m.br) (391s-m) (591s-m) (547ss) (477ss) 390s-m 377m 366s-m 300Sch 2c IR (11995-m.br) 740ss1/689s-m 590st 539m 467m 390s-m 377s-m 317s-m 317s-m 310ss.h 2d IR (1195-m.br) 730ss1/689s-m 590st 539m 467m 390s-m 377st-m 310ss.h 2d IR 1198/1202s-m 730ss1/690s-m 593st-m 545s-m 474m 392s-m 379s.m 310s-m 3a IR verdeckt 718st,br 583st-m 539m 464m 425m 330s-m 303s-m 3b IR verdeckt 718st,br 530st 239st 465m 335m 340m 319s-m 3b IR verdeckt 718st,br 530st 335m 340m 319s-m 3b IR verdeckt 705st/671s 526	2a	IR	1203/1200m	750st-m/687s	598st	542st-m	476s-m	399s-m	385m	366m	330s-n
RE $(1202/1192s-m)$ $(591s-m)$ $(542st-m)$ $(477ss)$ $(337s-m)$ 2c IR $1199s-m$ $740sst/689s-m$ $590st$ $539m$ $467m$ $390s-m$ $377st-m$ $310sst.$ 2d IR $1199s-mbt$ $740sst/689s-m$ $590st$ $539m$ $467m$ $390s-m$ $377st-m$ $310sst.$ 2d IR $1198/1202s-m$ $739sst/690s-m$ $593st-m$ $545s-m$ $474m$ $392s-m$ $379s-m$ $342m$ 2d IR $1198/1202s-m$ $738st/687s-m$ $593st-m$ $545s-m$ $474m$ $392s-m$ $342m$ 3a IR $verdeckt$ $718st,br$ $538st-m$ $545s-m$ $474m$ $392s-m$ $340m$ $319s-m$ 3b IR verdeckt $718st,br$ $530st$ $453s-m$ $340m$ $319s-m$ 3b IR verdeckt $718st,br$ $526st$ $499m$ $443m$ $419ss$ $371m$ $350Sch$ $290Sch$ $290Sch$ $290Sch$ $290Sch$ $290Sch$ $290Sch$ $290Sch$ $290Sch$ </td <td>ጽ</td> <td>IR</td> <td>1198st,br</td> <td>734sst/688s-m</td> <td>590m</td> <td>542s-m</td> <td>482m</td> <td>428s</td> <td>377m</td> <td>366s-m</td> <td>300Scl</td>	ጽ	IR	1198st,br	734sst/688s-m	590m	542s-m	482m	428s	377m	366s-m	300Scl
2c IR 1199-m 740sst/689-m 590st 539m 467m 390s-m 372m 357st-m 310sst. 2d IR (1195-mbt) (539s-m) (539s-m) (546st-m) (450s-mbt) (381s) (366ss) (340s-m) 312m 357st-m 310sst. 2d IR 1198/1202s-m 739sst/690s-m 593st-m 545st-m 474m 392s-m 379s-m 342m 2e IR [1200] 738st/687s-m 588st-m 545st-m 464m 425m 303s-m 319s-m 3a IR verdeckt 718st,br 530st ? 451s-m 419ss 319s-m 319s-m 3b IR verdeckt 718st,br 530st ? 451s-m 419ss 319s-m 3b IR verdeckt 718st,br 530st 290st		RE	(1202/1192s-m)		(591s-m)	(542st-m)	(477ss)			(337s-m)	
RE (1195-m,br) (539-m) (546st-m) (450s-m,br) (381s) (366ss) (340s-m) 2d 1R 1198/1202s-m 739sst/690s-m 593st-m 545s-m 474m 392s-m 379s-m 342s-m 2e 1R 11200] 738st/687s-m 588st-m 539m 464m 425m 332s-m 373s-m 3a 1R verdeckt 718st,br 530st ? 451s-m 423s-m 319s-r 3b 1R 1158/1149s-m 705st/671s 526st 499m 443m 419ss 371m 350Sch 290Sch 4 1 158 1169s-m 705st/671s 526st 499m ? 465m 423m 382s-m 319s-r	2	IR	1199s-m	740sst/689s-m	590st	539m	467m	390s-m	372m	357st-m	310ss,
2d IR 1198/1202s-m 739sst/690s-m 593st-m 545s-m 474m 392s-m 379s-m 342m 2e IR [1200] 738st/687s-m 588st-m 539m 464m 425m 379s-m 342m 3a IR verdeckt 718st,br 530st ? 451s-m 375m 340m 319s-m 3b IR verdeckt 718st,br 530st ? 451s-m 425m 340m 319s-m 3b IR 1158/1149s-m 705st/671s 526st 499m 443m 419ss 371m 350Sch 290Sch 290Sch 4 158/1149s-m 705st/671s 526st 499m ? 465m 423m 382s-m 350Sch 290Sch 353m ? 465m 423m 423m 382s-m 353m		RE	(1195s-m.br)		(539s-m)	(546st-m)	(450s-m.br)	(381s)	(366ss)	(340s-m)	
2e IR [1200] 738st/687s-m 58st-m 539m 464m 425m 350m 303s-m 3a IR verdeckt 718st,br 530st ? 451s-m 423s-m 385m 340m 319s-r 3b IR 1158/1149s-m 705st/671s 526st 499m 443m 419ss 371m 350Sch 290Sch 290Sch 4 * * 465m 423m 382s-m 353m	2d	IR	1198/1202s-m	739sst/690s-m	593st-m	545s-m	474m	392s-m	379s-m	342m	
3a IR verdeckt 718st,br 530st ? 451s-m 423s-m 385m 340m 319s-r 3b IR 1158/1149s-m 705st/671s 526st 499m 443m 443m 419ss 371m 350Sch 290Sc 4	2 e	IR	[1200]	738st/687s-m	588st-m	539m	464m	425m	350m	303s-m	
3b IR 1158/1149s-m 705st/671s 526st 499m 443m 419ss 371m 350Sch 290Sc 4 * 4 * 465m 423m 382s-m 353m	3a	IR	verdeckt	718st.br	530st	i	451s-m	423s-m	385m	340m	319s-r
4 ³ 465m 423m 382s-m 353m	3b	IR	1158/1149s-m	705st/671s	526st	499m	443m	419ss	371m	350Sch	290Scl
	4						ſ	465m	423m	382s-m	353m

.

durch eine NO-Streckbewegung bedingt ist. Gegenüber Na₂[DMG] bedeutet dies einen Anstieg um etwa 100 Wellenzahlen, was aber durch die koordinative Beanspruchung der Stickstoffatome durch die Zentralmetalle Ni, Pd, Pt oder Cu zwanglos erklärt werden kann. Ein nennenswerter Einfluss der M³Me₂-Gruppierung auf die Lage der NO-Vibration ist nicht feststellbar.

Die starke Wechselwirkung der N-O-Bewegung mit den genannten C-CH₃-Schwingungen tritt beim Vergleich mit den Glyoximatokomplexen besonders augenfällig zutage, denn in den IR-Spektren von 2a und 3a ist diese N-O-Vibration der starken Absorptionsbande bei etwa 1180 (2a) und 1200 cm⁻¹ (3a) zuzuordnen (sie liegt damit in enger Nachbarschaft zu einer "in-plane"-CH-Deformation des Glyoximgerüsts). Tabelle 3 enthält eine Zusammenstellung wichtiger Frequenzwerte der Glyoximato-Reste aus den Spektren der omplexe 1-4.

Die Schwingungen des Zentralgerüsts MetN₄ sollten eigentlich die besten Hinweise auf ein zentrosymmetrisches oder azentrisches Strukturprinzip der Komplexe liefern. Da diese Vibrationen aber zwischen 300–550 cm⁻¹ zu erwarten sind und somit im Bereich der M³C₂- und M³O₂-Valenz- sowie einer Reihe von Glyoximgerüst-Deformationsschwingungen liegen, ist eine gesicherte Zuordnung und damit relevante Strukturaussage—vor allem auch wegen unzureichender Ramandaten—ausgeschlossen.

Eine der Absorptionen unterhalb 550 cm⁻¹ zeigt einen deutlichen Frequenzgang in der homologen Reihe der [Ni(DMG)₂]-Komplexe: **1** (507 cm⁻¹) - **2b** (482 cm⁻¹) -**3b** (443 cm⁻¹). Diese Bande kann mit Sicherheit nur durch eine M³O₂-Streckbewegung (ν_{as}) bedingt sein. Wie der Vergleich der verschiedenen Dimethylgalliumderivate zeigt (**2b** (482 cm⁻¹) - **2c** (467 cm⁻¹) - **2d** (474 cm⁻¹)-**2e** (464 cm⁻¹)), ist aber auch diese Schwingung mit anderen Gerüstbewegungen gekoppelt, also keineswegs charakteristisch. Ihr symmetrisches Pendant (zwischen 250–330 cm⁻¹ erwartet) ist nicht zweifelsfrei zu lokalisieren. Dagegen bereitet die Zuordnung der M³C₂-Valenzen bzw. CH₃(M³)-Deformationsschwingungen keinerlei Probleme und ist durch zahlreiche Vergleichsmöglichkeiten abgesichert [22].

Von den übrigen in Tab. 4 genannten Frequenzen ist mindestens eine von hohem $MetN_4$ -Charakter, während den anderen (neben $MetN_4$ -Anteilen) vornehmlich Gerüstdeformationscharakter zuzuordnen ist. Zieht man die Spektren der Ausgangskomplexe $Met(DMGH)_2$ [17,18,20] und $Met(GH)_2$ [16] (bei denen auf Grund von Berechnungen eine Abstufung der Met–N-Kraftkonstante nach Pt > Pd > Cu > Ni ermittelt wurde) zum Vergleich heran, so ist allgemein eine Frequenzerniedrigung dieser Met–N-"haltigen" Vibrationen festzustellen, was für eine Bindungslockerung spricht. Die endgültige Klärung der Strukturgegebenheiten bei den Dimethylmetallglyoximatokomplexen muss der Röntgenstrukturanalyse zweier Vertreter dieser Substanzklasse vorbehalten bleiben.

Röntgenstrukturanalyse von 2a und 2d

Durch Optimieren der Winkelwerte ausgesuchter Reflexe (bei **2a** waren dies 24 Reflexe 20° < 2 θ < 30°, bei **2d** 25 Reflexe 25° < 2 θ < 40°) und anschliessender Verfeinerung der Messwerte ergaben sich folgende Kristalldaten: **2a**: monoklin, Raumgruppe C2/c; a 2025.1(3), b 918.1(1), c 845.8(1) pm; β 102.2(5)°; V 1536.9(3) ×10⁶ pm³; ρ_{ro} 1.86 g/cm³; Z = 4. **2d**: triklin, Raumgruppe $P\overline{1}$; a 618.5(1), b 751.7(2), c 1030.7(2) pm; a 92.9(1), β 102.9(1), γ 90.1(1)°; V 466.4(2)×10⁶ pm³; ρ_{ro} 2.22 g/cm³; Z = 1. Bis zu einem $\theta_{max} = 30^{\circ}$ wurden bei 2a 2245 (2725 bei 2d) unabhängige Reflexe registriert, wovon 762 (204) eine Intensität $I < 2\sigma(I)$ hatten und als nicht beobachtet gewertet wurden. Die Lösung beider Strukturen gelang über Patterson-Methoden. Diese ergaben jeweils die Lagen der Met- und M³-Atome. Durch diese sollten zumindest die Vorzeichen der stärksten der beobachteten Reflexe bestimmt sein. Nachfolgende Fourier- und Differenz-Fourier-Synthesen ergaben die Lagen der übrigen Nichtwasserstoff-Atome. Bei 2a wurden die Ortsparameter der Wasserstoffatome berechnet und auch durch Differenz-Synthesen bestätigt; sie blieben aber von der Verfeinerung ausgeschlossen. Die H-Atome von 2d sind bei der Strukturbestimmung nicht berücksichtigt worden.

Die Verfeinerungen der Atomparameter mit zunächst isotropen und dann anisotropen Temperaturparametern konvergierten für **2a** bei R = 0.12 (isotrop) und

TABELLE 5

Atom y/bUx / a z/ϵ 2a Ni 0 2500 309(5) 3272(2) Ga 1393(1) 2267(1) 5639(1) 474(4) O(1) 1441(3) 3608(7) 3904(6) 462(21) -998(6)O(2) -566(3)3086(7) 471(22) N(1) 947(3) 3421(7) 2603(7) 357(22) N(2) -29(3)3212(7) 230(7) 346(21) C(1) 1107(4) 3539(9) 1239(9) 423(29) C(2) 545(4) 3382(9) -152(9) 400(28) C(3) 2086(5) 2876(12) 7471(11) 634(39) C(4) 1206(7)337(13) 4617(13) 698(41) H(1) 1595 3728 1122 H(2) 606 3410 -1313 H(31) 2006 3905 7829 H(32) 2839 7234 2552 2070 8407 H(33) 2196 H(41) 877 442 3562 H(42) 1011 - 318 5346 H(43) 1637 - 90 4427

ORTSPARAMETER (×10⁴) UND TEMPERATURPARAMETER FÜR 2a UND 2d (Der Parameter U des 1sotropen Temperaturfaktors $\exp(-8\pi^2 U \sin^2\theta/\lambda^2)$ ist in Einheiten von pm² angegeben. In Klammern die Standardabweichungen in Einheiten der letzten Dezimalen)

Die erste Zahl der Indizes der H-Atome entspricht dem Index des zugehorigen C-Atoms. Die H-Atome blieben von der Verfeinerung ausgeschlossen. Bei Strukturfaktorenrechnungen erhielten sie den Temperaturfaktor des zugehörigen C-Atoms

Pt	0	0	0	300(2)	
Ga	2982(2)	-2429(1)	2622(1)	382(3)	
N(1)	2697(10)	- 1438(9)	5(6)	334(17)	
N(2)	- 99(12)	- 440(9)	- 1973(6)	377(19)	
O(1)	4187(10)	1902(8)	1105(6)	449(18)	
O(2)	-1858(11)	110(8)	- 2927(6)	441(18)	
C(1)	3128(14)	- 1968(10)	-1146(8)	374(22)	
C(2)	1434(14)	- 1389(10)	- 2277(8)	378(22)	
C(11)	5087(16)	- 3038(13)	-1295(9)	535(30)	
C(21)	1470(19)	-1878(14)	- 3704(9)	484(27)	
C(3)	5646(18)	- 2706(14)	4027(10)	561(31)	
C(4)	443(17)	-4113(14)	2023(11)	575(32)	
	Pt Ga N(1) N(2) O(1) O(2) C(1) C(2) C(11) C(21) C(21) C(3) C(4)	Pt 0 Ga 2982(2) N(1) 2697(10) N(2) -99(12) O(1) 4187(10) O(2) -1858(11) C(1) 3128(14) C(2) 1434(14) C(11) 5087(16) C(21) 1470(19) C(3) 5646(18) C(4) 443(17)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

R = 0.065 (anisotrop); für **2d** bei R = 0.063 (isotrop) und R = 0.044 (anisotrop) ($R = \Sigma \omega (|F_0| - |F_c|) / \Sigma \omega |F_0|$]). Bei den Strukturfaktorenrechnungen wurden die Atomformfaktoren von Cromer und Mann [23] benutzt. Die F_0 -Werte waren bei Verfeinerungen mit Gewichten versehen, für deren Berechnung die Standardabweichungen aufgrund der statistischen Fehler der Messungen dienten. Die Ergebnisse der Strukturbestimmungen sind in den Tab. 5 und 6 zusammengefasst. Zur Erklärung dient Fig. 1a und b.

Die Bindungsabstände im Glyoximat- und Dimethylglyoximatrest stimmen im Mittel gut mit denen der Grundkörper Ni $(GH)_2$ [3] und Pt $(DMGH)_2$ [2] überein. Die Substitution der aciden H-Atome der O-H \cdots O-Brücken durch Me₂Ga-Gruppen führt allerdings zu deutlichen Verlängerungen der Met-N-Abstände (Mittelwerte: in **2a** 190.8(7), in Ni $(GH)_2$ 187.4(4) pm bzw. in **2d** 200.9(13), in Pt $(DMGH)_2$ 196(2) pm). Eine drastische Vergrösserung erfährt der O(1) \cdots O(2)-Abstand beim Übergang von den Grundkörpern zu den Dimethylgalliumkomplexen: 280.4 (**2a**) gegenüber 245.3 beim Ni $(GH)_2$ bzw. 289.4 (**2d**) gegenüber 262 pm beim Pt $(DMGH)_2$. Auch bei den Bindungswinkeln werden vergleichbare Unterschiede beobachtet.

TABELLE 6

BINDUNGSLÄNGEN (pm) UND -WINKEL (°) FÜR **2a** UND **2d** (Die Standardabweichungen (σ) in Klammern beziehen sich auf die letzten Dezimalen)

(Me ₂ Ga) ₂ [Ni	$(G)_2$ (2a)		_		
Ni-N(1)	190.6(7)	N(1)-Ni-N(2)	82.2(3)	Ni-N(2)-C(2)	114.4(5)
Ni-N(2)	190.9(6)	N(1)-Ni-N(2')	98.0(3)	C(2) - N(2) - O(2)	116.6(6)
N(1)-C(1)	126.7(11)	N(1)-Ni-N(1')	171.8(3)	N(1)-C(1)-C(2)	114.8(7)
N(2)-C(2)	128.0(11)	N(2)-Ni-N(2')	176.7(3)	N(2)-C(2)-C(1)	113.8(7)
C(1)-C(2)	146.0(12)			N(1)-O(1)-Ga	113.3(5)
N(1)-O(1)	133.3(10)			N(2) - O(2) - Ga	120.3(4)
N(2)-O(2)	134.1(11)			O(1) - Ga - O(2')	93.2(2)
GaO(1)	193.3(6)	Ni-N(1)-C(1)	144.4(5)	O(2)-Ga-C(4)	109.1(2)
Ga-O(2)	191.8(7)	Ni-N(1)-O(1)	128.3(5)	O(2')-Ga-C(3)	105.6(3)
Ga-C(3)	194.0(13)	C(1)N(1)O(1)	116.6(7)	O(1)-Ga-C(4)	106.2(4)
Ga-C(4)	197.3(9)	Ni-N(1)-O(2)	128.9(5)	O(1)-Ga-C(3)	106.2(4)
				C(3)-Ga-C(4)	130.4(3)

Die	Bindungslä	ngen	und	-win	kel	mit	H-A	tomen	bet	ragen i	m l	Mitte
-										-		

(Me ₂ Ga) ₂ [Pt(DMG)2](2d)				
Pt-N(1)	198.8(17)	N(1)-Pt-N(2)	77.2(3)	N(1)-C(1)-C(11)	124.4(7)
Pt-N(2)	203.1(9)	N(1)-Pt-N(2')	102.8(3)	C(2)-C(1)-C(11)	123.6(8)
N(1)-C(1)	131.6(13)	N(1)-Pt-N(1')	180.0(3)	N(2)-C(2)-C(1)	115.4(8)
N(2)-C(2)	127.2(15)	N(2)-Pt-N(2')	180.0(3)	N(2)-C(2)-C(21)	121.5(8)
C(1)-C(2)	146.7(18)	N(1')-Pt-N(2)	102.8(3)	C(1)-C(2)-C(21)	123.1(8)
C(1)-C(11)	148.7(18)	N(1')-Pt-N(2')	77.2(3)	N(1)-O(1)-Ga	115.9(5)
C(2)-C(21)	150.3(14)	Pt-N(1)-C(1)	118.5(5)	N(2)-O(2)-Ga	116.5(4)
N(1)-O(1)	135.2(15)	Pt-N(1)-O(1)	125.5(5)	O(1)-Ga-O(2')	97.5(3)
N(2)-O(2)	137.2(16)	C(1)-N(1)-O(1)	116.0(7)	O(1)-Ga-C(3)	102.7(4)
Ga-O(1)	193.4(13)	Pt-N(2)-C(2)	116.8(5)	O(1)-Ga-C(4)	108.9(4)
Ga-O(2)	191.5(13)	Pt-N(2)-O(2)	121.2(5)	O(2') - Ga - C(3)	106.6(4)
Ga-C(3)	195.4(21)	C(2)-N(2)-O(2)	121.7(7)	O(2')-Ga-C(4)	108.7(4)
Ga-C(4)	198.3(22)	N(1)-C(1)-C(2)	112.0(7)	C(3)-Ga-C(4)	128.2(4)

C-H 101 pm; \lt H-C-H 108.8 und \lt C-C-H 122.8°

Fig. 1. Molekülstruktur von $(Me_2Ga)_2[NI(G)_2]$ (a) und von $(Me_2Ga)_2[Pt(DMG)_2]$ (b). Zur Darstellung der Schwingungsellipsoide (50% Wahrscheinlichkeit) wurde das Programm ORTEP [24] verwendet.

Während in der Regel gute Übereinstimmung mit den Winkeln der Grundkörper besteht, werden für die Met-N-O-Winkel stets höhere, für die C-N-O-Winkel dagegen kleinere Werte gefunden (Mittelwerte für \ll Ni-N-O 128.6 (**2a**) und 123.2°

 $(Ni(GH)_2)$; für <C-N-O 116.6 (2a) und 121.4° $(Ni(GH)_2)$). Beim Vergleich von 2d mit Pt(DMGH)₂ ist diese Tendenz ebenfalls festzustellen, allerdings ist hier eine Mittelwertbildung nicht zulässig, da sich die Winkel an N(1) und N(2) signifikant unterscheiden und zudem an N(1) stärkere Änderungen erkennbar sind (2d (Pt(DMGH)₂): <Pt-N(1)-O(1) 125.5° (121.2°), <Pt-N(2)-O(2) 121.2° (118.9°); <C(1)-N(1)-O(1) 116.0° (121°), <C(2)-N(2)-O(2) 121.7° (123°)).

Die für Ni(GH)₂ und Pt(DMGH)₂ berichtete Abweichung der Atome von einer streng planaren Anordnung wird bei den Dimethylgalliumkomplexen in noch stärkerem Masse beobachtet. Die in Fig. 1a,b angegebenen Zahlenwerte entsprechen den Abweichungen (in pm) der Atome aus einer durch Met, N(1), N(2), C(1), C(2) gelegten besten Ebene. Die Ga-Atome liegen in beiden Verbindungen ausserhalb dieser Ebene und zwar bei 2a cis-, bei 2d trans-ständig. Somit lässt sich 2d durch die Sesselform C und 2a durch die Wannenkonformation B beschreiben, wobei letztere noch mit einer besonders deutlichen Verdrillung der Komplexebene verbunden ist. Beide Strukturvarianten sind vom (BF₂)₂[Ni(DMG)₂] bzw. dessen Pyridin- und Anthrazenanlagerungsverbindungen her bekannt [9,10], der gravierendste Unterschied besteht aber in den intermolekularen Met ··· Met-Abständen. Während in den Difluoroborkomplexen Ni ··· Ni-Distanzen zwischen 320-370 pm gemessen wurden, ist der entsprechende Wert für 2a mit 528.7 pm (für 2e 618.5 pm) mehr als $1\frac{1}{2}$ -mal so gross und gestattet keinesfalls die Diskussion irgendwelcher intermolekularer $\pi \cdots \pi$ -Wechselwirkungen. Derartige "Verknüpfungen" scheinen aber intramolekular zu existieren, denn die Met ··· M³-Abstände liegen mit etwa 350 pm (356.3 für 2a und 350.9 pm für 2d) in derselben Grössenordnung, wie die Met ···· Met-Abstände in den Ausgangsglyoximaten bzw. im BF₂-Derivat.

Schliesslich sind die Ga-O-Bindungsabstände (bei Berücksichtigung der Standardabweichung) in beiden Verbindungen gleich und betragen im Mittel 192.5 pm. Sie entsprechen exakt der Summe der Kovalenzradien [25] und sind weitaus kürzer, als die für das weitgehend ionische $(Me_2Ga)_2[C_2O_4]$ [26] gefundenen. Im Einklang damit finden wir-entsprechend früherer Beobachtungen [27]--kleinere und für kovalente Bindungsverhältnisse typische C-Ga-C-Bindungswinkel («C-Ga-C für 2a 130.4, für 2d 128.2 und für $(Me_2Ga)_2[C_2O_4]$ 136.3°).

Experimentelles

Die Darstellung der Glyoximatometallate [28] und Trimethylmetalle [z.B. 21,26] bedarf keiner besonderen Erläuterung.

In einem kleinen Zweihalskolben—der mit einer einfachen Vorrichtung zur gasvolumetrischen Bestimmung des entstehenden Methangases verbunden ist—wird die Suspension des Metallchelates in Toluol, Pentan oder Hexan (etwa 20-40 ml für die in Tab. 7 angegebenen Mengen) mit einem geringen Überschuss des Trialkyls (mit demselben Lösungsmittel etwa im Verhältnis 1/5 verdünnt) tropfenweise zur Reaktion gebracht. Die sofort einsetzende Gasentwicklung zeigt eine spontane Umsetzung, welche gegen Ende der Alkylzugabe durch gelindes Erwärmen (30-40 °C) zum Abschluss gebracht wird. Der anfallende Feststoff wird abfiltriert, mehrmals mit wasserfreiem Pentan gewaschen und zur abschliessenden Reinigung aus Toluol oder einem C₆H₆/CHCl₃-Gemisch (3/1) umkristallisiert. Die Ausbeute an Rohmaterial ist praktisch quantitativ, die Ausbeuten nach einem Umkristallisationsschritt sind in Tab. 7 angeführt, ebenso die im Einzelfall verwendeten

Ausgangsverbind	ungen		Endprodukt	Analysen ((Gef. (ber.) (%)	()			
g (mmol)			(% Ausbeute ^a)	c	Н	z	M ³		Met
N ₁ (DMGH) ₂	AlMe ₃	1	(Me ₂ Al) ₂ [Ni(DMG) ₂]	35.73	6.13	13.70	13.22		14.61
1.9 (6.53)	1.09 (15.12)		(10)	(35.94)	(6.03)	(13.97)	(13.46)		(14.64)
Ni(GH) ₂	GaMe ₂	2а	$(Me_2Ga)_2[Ni(G)_2]$	22.37	3.79	13 03		2 45.76	
1.63(7.0)	1.84 (15.15)		(65)	(22.33)	(3.75)	(13.02)	(32.40)		(13.64)
Ni(DMGH) ₂	GaMe ₃	2p	(Me ₂ Ga) ₂ [Ni(DMG) ₂]	29.53	4.95	11.23		2 40.44	
3.0(10.31)	2.57(22.38)		(60)	(29.63)	(4.97)	(11.52)	(28.66)		(12.07)
Pd(DMGH) ₂	GaMe ₃	36	$(Me_2Ga)_2[Pd(DMG)_2]$	26.81	4.57	10.22		<u>2</u> 46.43	
0.96(2.83)	0.73 (6.35)		(00)	(26.98)	(4.53)	(10.49)	(26.10)		(19.92)
Pt(DMGH) ₂	GaMe ₃	2d	$(Me_2Ga)_2[Pt(DMG)_2]$	22.85	3.85	8.68		2 54.03	
1.2(2.81)	0.65(5.66)		(88)	(23.14)	(3.88)	(8.99)	(22.39)		(31 32)
Cu(DMGH) ₂	GaMe ₃	2e	$(Me_2Ga)_2[Cu(DMG)_2]$	29.34	4.90	11.58	28.27		12.99
2.1(7.15)	1.7(14.80)		(95)	(29.33)	(4.92)	(11.40)	(28.38)		(12.93)
Ni(GH) ₂	InMe ₃	За	$(InMe_2)_2[Ni(G)_2]$	18.77	3.19	11 15		2 54.61	
1.44(6.18)	1.98(12.38)		(94)	(18.46)	(3.10)	(10.76)	(44.11)		(11.28)
Ni(DMGH) ₂	InMe ₃	3b	(InMe ₂) ₂ [Ni(DMG) ₂]	24.85	4.19	9.75		Σ 49.80	
2.32(7.97)	2.79(17.44)		(10)	(24.99)	(4.19)	(9.72)	(39.82)		(10.18)
Ni(DMGH) ₂	LioMe	4	L ₁₂ [Ni(DMG) ₂]	32.05	4.18	18.58		n. bestummt	
2.14(7.35)	1.06(29 4)		(quantit.)	(31.94)	(4.02)	(18.63)	(Lı 4.61)		(19.52)
								and a subscription of the second s	

PRÀPARATIVE UND ANALYTISCHE DATEN DER KOMPLEXE 1-4

TABELLE 7

" Die Ausbeutebestimmung erfolgte nach einmaliger Umkristallisation und 1st auf das im Unterschuss eingesetzte Ni-, Pd-, Pt- oder Cu-Metallat bezogen.

Ausgangsmengen sowie die analytischen Daten der Komplexe. Von diesem allgemein anwendbaren Verfahren weicht nur die Darstellung des zitierten $Li_2[Ni(DMG)_2]$ dahingehend ab, dass durch Umsetzung von LiOMe mit $Ni(DMGH)_2$ (in wasserfreiem CH₃OH) das gewünschte Lithiumsalz in grösserer analytischer Reinheit anfällt und diesem Verfahren daher der Vorzug gegeben wurde.

Die C-, H- und N-Werte sind nach den üblichen Verfahren der organischen Verbrennungsanalyse ermittelt worden, nur für 1 und 2e konnten die Met und M^3 -Gehalte getrennt bestimmt werden, gewöhnlich ist aber nur die Summe beider Metallanteile durch komplexometrische Titration bestimmt worden.

Schwingungsspektren: IR in kapillarer Schicht als Nujol- oder Hostaflonverreibung zwischen 200-4000 cm⁻¹ mit einem Perkin-Elmer PE 283. Raman mit einer speziellen rotierenden Probenhalterung [29] und einem Coderg PHO-Spektrophotometer (6471 Å-Linie eines Kryptongaslasers).

Kernresonanzspektren: ¹H-NMR mit einem Bruker WP 60-, ¹³C-NMR mit einem Bruker HX 90 E-Gerät.

Röntgenstrukuren: Geeignetes Kristallmaterial erhielten wir durch Umkristallisation aus $C_6H_6/CHCl_3$ -Gemischen. Die Bestimmung der Gitterkonstanten sowie die Messung der Beugungsintensitäten erfolgten mit mässig gutem Kristallmaterial (polysynthetische Zwillingsbildung, Kristallabmessungen: **2a** 0.07 × 0.015 × 0.005 cm und **2d** 0.12 × 0.005 × 0.002 cm) bei Raumtemperatur an einem Syntex-Vierkreisdiffraktometer P2₁ (Mo- K_{α} -Strahlung, Graphitmonochromator, ω -scan). Alle zur Strukturbestimmung notwendigen kristallographischen Berechnungen erfolgten auf den Rechenanlagen CDC 6600 und CYBER 174 des Rechenzentrums der Universität Stuttgart mit dem Programmsystem X-ray [30].

Dank

Dem Fonds der Chemischen Industrie gilt unser Dank für die finanzielle Unterstützung der Arbeit.

Literatur

- 1 D.E. Williams, G. Wohlauer und R.E. Rundle, J. Amer. Chem. Soc., 81 (1959) 755.
- 2 M.S. Hussain, B.E.V. Salinas und E.O. Schlemper, Acta Crystallogr., B35 (1979) 628; s. dort weitere Lit.
- 3 M. Calleri, G. Ferraris und D. Viterbo, Acta Crystallogr., 22 (1976) 468 und Inorg. Chim. Acta, 1 (1967) 297.
- 4 E. Frasson, R. Bardi und S. Bezzi, Acta Crystallogr., 12 (1959) 201.
- 5 C.W. Banks und D.W. Barum, J. Amer. Chem. Soc., 80 (1958) 3579, 4767 und die dort angeführte Lit.
- 6 G.N. Schrauzer, Chem. Ber., 95 (1962) 1438.
- 7 W. Fedder, F. Umland und E. Hohaus, Monat. Chem., 111 (1980) 971.
- 8 N. Voiculescu, A. Airinei und I. Popescu, Rev. Roumaine Chim., 19 (1974) 399 und die dort angegebene Lit.
- 9 F.S. Stephens und R.S. Vagg, Acta Crystallogr., B33 (1977) 3159.
- 10 F.S. Stephens und R.S. Vagg, Inorg. Chim. Acta, 51 (1981) 163; A.J. Charlson, F.S. Stephens, R.S. Vagg und E.C. Watton, Inorg. Chim. Acta, 25 (1977) L51.
- 11 T. Halder, W. Schwarz, J. Weidlein und P. Fischer, J. Organomet. Chem., 246 (1983) 29.
- 12 H. Küppers, Farbe-Ursprung, Systematik, Anwendung, Callwey, 3. Aufl. München, 1977.
- 13 W.W. Simons, The Sadtler Handbook of Proton NMR Spectra, Sadtler, Philadelphia, 1978.
- 14 L.F. Johnson und W.C. Jankowski, Carbon-13 NMR Spectra, Wiley, London, 1972.

- 15 G. Keresztury, S. Holly und M.P. Marzocchi, Spectrochim. Acta, 33A (1977) 29
- 16 A. Bigotto, V. Galasso und G. De Altı, Spectrochim. Acta, 27A (1971) 1659.
- 17 A. Bigotto, G. Costa, V. Galasso und G. De Alti, Spectrochim. Acta, 26A (1970) 1939.
- 18 J.E. Caton, Jr. und C.V. Banks, Inorg. Chem., 6 (1967) 1670; B. Orel, M. Penko und D. Hadži, Spectrochim. Acta, 36A (1980) 859.
- 19 Y. Nishida, M. Kozuka und K. Nakamoto, Inorg. Chim. Acta, 34 (1979) L273.
- 20 D.M. Adams und D.C. Stephens, Inorg. Chem., 20 (1981) 525.
- 21 B. Eberwein, W. Lieb und J. Weidlein, Z. Naturforsch. B, 32 (1977) 32.
- 22 J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen I, Thieme, Stuttgart, 1981.
- 23 D. Cromer und G. Mann, Acta Crystallogr., A24 (1968) 321.
- 24 C.K. Johnson, Ortep Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, 1965.
- 25 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, N.Y., 1948.
- 26 H.D. Hausen, K. Mertz und J. Weidlein, J. Organomet. Chem., 67 (1974) 7.
- 27 F. Gerstner, W. Schwarz, H.-D. Hausen und J. Weidlein, J. Organomet. Chem., 175 (1979) 33.
- 28 Gmelins Handbuch der Anorganischen Chemie, Verlag Chemie, Weinheim; Teil Ni (1969), Teil Pd (1942), Teil Pt (1957), Teil Cu (1966).
- 29 B. Schaible, K. Roessel, J. Weidlein und H.-D. Hausen, Z. Anorg. Allg. Chem., 409 (1974) 176.
- 30 J.M. Stewart, P.A. Machin, C.W. Dickinson, H.L. Ammon, H. Heck und H. Flack, The X-Ray System of Crystallographic Programs, University of Maryland, USA 1976.